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ABSTRACT

Let F[∂;σ, δ] be a ring of Ore polynomials over a field. We
give a new deterministic algorithm for computing the Popov
form P of a non-singular matrix A ∈ F[∂;σ, δ]n×n. Our main
focus is to ensure controlled growth in the size of coefficients
from F in the case F = k(z), and even k = Q. Our algorithms
are based on constructing from A a linear system over F and
performing a structured fraction-free Gaussian elimination.
The algorithm is output sensitive, with a cost that depends
on the orthogonality defect of the input matrix: the sum of
the row degrees in A minus the sum of the row degrees in
P . The resulting bit-complexity for the differential and shift
polynomial case over Q(z) improves upon the previous best.

1 INTRODUCTION

Ore polynomial rings, also known as skew polynomial rings,
are non-commutative generalizations of univariate polyno-
mial rings, introduced by Ore [16]. They have a variety of
applications, such as modeling recurrence relations and dif-
ferential equations [16]. Row spaces of matrices over Ore
polynomial rings arise in studying coupled systems of such
equations. Computing normal forms of such matrices allows
comparing systems and finding small or otherwise special
elements in the spaces.

In this paper, we consider the computation of the Popov
normal form of a non-singular matrix over an Ore polynomial
ring (see the formal definition of Popov form in Section 2).
Our focus is when the base field F is infinite so coefficient
growth is a concern, in particular F = k(z) where k is some
field, possibly also with coefficient growth from k in mind,
for example k = Q.

An Ore polynomial ring is given by a base field F, an
automorphism σ of F, and a “derivation” of σ: this is a map
δ : F → F satisfying

δ(a+ b) = δ(a) + δ(b)

δ(ab) = σ(a)δ(b) + δ(a)b .
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The Ore ring F[∂;σ, δ] is then given as the set of finite formal
sums a0 + a1∂ + . . . + ad∂

d, with ai ∈ F. Addition of two
Ore polynomials is the usual element-wise addition, while
multiplication is given from the following non-commutative
rule for multiplying an a ∈ F with ∂ on the right:

∂a = σ(a)∂ + δ(a) .

We mention two particularly important examples of Ore
polynomial rings where F = k(z):

• Differential polynomials where σ(z) = z and δ(f(z)) =
f ′(z) is the usual derivative with respect to z.

• The shift case, or time-dependence, where σ(f(z)) =
f(z + 1) is the shift automorphism and δ = 0.

We refer to [2, 7] and the references therein for background on
linear algebra with matrices of Ore polynomials. Here, we only
mention that for matrices over Ore rings the notions of rank
and (non)-singularity make sense: in particular, performing
row or column operations on a matrix will not change its
rank. Further, two matrices M,M ′ ∈ F[∂;σ, δ]n×m generate
the same left row space if and only if there exists U ∈
GLn(F[∂;σ, δ]) such that M = UM ′, where GLn(F[∂;σ, δ])
denotes the set of invertible n × n matrices over F[∂;σ, δ].
Roughtly speaking, the Popov form of a matrix A is the
matrix that generates the same row space as A but with row
degrees as small as possible.

Computing reduced matrices and normal forms of matri-
ces over an Ore polynomial ring F[∂;σ, δ], while taking into
account expression swell from F when F is infinite, has previ-
ously been considered. Beckermann, Cheng and Labahn [2]
and Cheng and Labahn [5] compute row reduced bases us-
ing an “order basis” approach as known for matrices over
F[x], and taking care of coefficient growth. Davies, Cheng
and Labahn [17] show how computing the Popov form can
be reduced to nullspace computation, a problem for which
effective fraction-free techniques exist. Giesbrecht and Kim
[7] compute the Hermite normal form of an Ore polynomial
matrix by linearizing it to a larger matrix over F. The re-
sulting problem can then be tackled completely by the usual
approaches for matrices over F.

A common thread in the algorithms mentioned in the
previous paragraph is that they either explicitly [7] or implic-
itly [2] consider a linearization over F of the input matrix:
this allows to obtain bounds on the size of intermediate ex-
pressions. Although in a slightly different context, we remark
that a linear algebra point for normal form computation
can be found for the commutative case already in [13, Sec-
tions 6.7.1 and 6.72]. More recently, in [3] and [12, Section 7]
it is shown that the shifted Popov basis of a k[x]-module
given by equations exactly corresponds to some specific rows
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in a reduced row echelon form of the left nullspace of a con-
stant matrix with much larger dimension than the original
polynomial equations. The algorithm we present here is based
on the linearization technique of Labhalla, Lombardi and
Marlin [14].

Cost estimates for our algorithm are given in Section 6.1.
We summarize some of these cost estimates here and com-
pare with previous work. Consider computing the Popov form
in the differential case when F = k(z). We are given a non-
singular input matrix A ∈ k(z)[∂;σ, δ]n×n, that is, the entries
of A are polynomials in ∂, the coefficients of which are rational
functions from k(z). We can assume, without loss of gener-
ality, by clearing denominators, that A is over k[z][∂;σ, δ].
A running time estimate in terms of operations from k thus
involves three parameters: the dimension n; a bound d for
deg∂ A; a bound e for degz A. Our algorithm constructs from
A a structured matrix of dimension O(n2d) × O(n2d) over
k[z]. We then perform a structured fraction-free Gaussian
elimination to recover the Popov form. The cost of our algo-
rithm is O(nω+2d3 M(n2de)) operations from k. Here, ω is an
exponent for matrix multiplication, and M is a multiplication
time: two polynomials from k[z] of degree strictly less than t
can be multiplied in M(t) operations from k. Assuming ω = 3
and a pseudo-linear multiplication time, and ignoring loga-
rithmic factors, the cost of our algorithm is then on the order
of n7d4e operations from k. For comparison, the fraction-free
algorithm supporting [2, Corollary 7.7] requires on the order
of n9d4e2 operations from k to produce a row reduced form
of A, while the algorithm in [5, Theorem 6.2] requires on the
order of n8d4e+ n7d3e2 operations from k.

Now consider the case k = Q. Like before, we assume
our input matrix is over Z[z][∂;σ, δ]. Ignoring logarithmic
factors, and again assuming pseudo-linear integer arithmetic,
our algorithm requires on the order of n9d5e log β bit opera-
tions. Here, β is a parameter that depends on the magnitude
of integer coefficients in A (see Theorem 6.2). The modu-
lar algorithm supporting [17, Theorem 6.3] requires about
n10d5e log β + n9d4e2 log β bit operations.

On the one hand, we point out that the algorithms of [2, 5]
solve a considerably more general problem than we do in this
paper: they can be applied to input matrices of arbitrary
shape and rank and thus compute the rank of the input
matrix as well as a left nullspace. Although we hope to
consider the rank deficient case in the future, our analysis
currently assumes the input matrix is non-singular. On the
other hand, the algorithms in [2, 5] only produce a row
reduced form of A and not the canonical Popov forms.

Beyond the improved asymptotic worst case cost estimates
we have reported above, our algorithm has two additional
features. First, in the shift case, the worst case running
times we have reported above are improved by a factor of
n: the linearized system has a special shape in this case
which the algorithm is able to exploit. Second, for inputs
that are are not too far from being row reduced the running
time is asymptotically faster. The orthogonality defect of
A is the difference between the sum of the row degrees in

A and the sum of the row degrees in its Popov form P ,
denoted by OD(A). Our algorithms are output sensitive in
the parameter OD(A), which can be as small as 0 and as
large as nd. If n ≤ OD(A) ≤ nd then the running times
reported above are improved by a factor of OD(A)/(nd). For
OD(A) < n further improvements are obtained. In the special
case OD(A) = 0, which means the input matrix is already
reduced, the algorithm detects this and avoids the lion’s share
of the computation, instead applying a fast normalization to
transform the input to Popov form.

The rest of this paper is organized as follows. In Section 2
we define some notation and recall some important facts about
matrices of Ore polynomials that are established in [2, 7].
In Section 3 we recall the linearization method of Labhalla,
Lombardi and Marlin [14] for Hermite form computation
over k[x]. Section 4 extends the method to compute the
Popov form of a non-singular matrix of Ore polynomials.
Section 5 gives the design and analysis of our algorithm for
performing a structured block elimination of the linearized
system. Section 6 shows how the elimination can be done
in a fraction-free fashion and gives bounds on the sizes of
intermediate expressions for some concrete cases of F, namely
F = k(z), F = Q and F = Q(z). Cost analysis for computing
the Popov form over these rings is provided in Section 6.1.
Section 7 concludes.

2 PRELIMINARIES

Let F[∂;σ, δ] be an Ore polynomial ring. The degree of a
vector v⃗ ∈ F[∂;σ, δ]1×n or matrix A ∈ F[∂;σ, δ]n×m, denoted
by deg v⃗ and degA, respectively, is the maximal degree of
the entries of v⃗ or A (we define deg 0 = −∞). If v⃗ is non-zero
then by the pivot of v⃗, denoted piv(v⃗), we mean the right-
most entry of v⃗ having deg v⃗. The elements of v⃗ are denoted
vi for i = 1, . . . , n. By rdegA we mean the list [d1, d2, . . . , dn]
where di = deg rowiA, 1 ≤ i ≤ n.

Definition 2.1. Given a non-singular A ∈ F[∂;σ, δ]n×n

with rdegA = [d1, d2, . . . , dn], the leading matrix of A, de-
noted LM(A) ∈ Fn×n, is the matrix whose (i, j) entry is
the coefficient of ∂di of Ai,j . A is said to be row reduced if
rank(LM(A)) = n.

A canonical row reduced basis is provided by the Popov
form. Although the Popov form can be defined for a matrix
of arbitrary shape and rank, in this paper we focus on non-
singular matrices.

Definition 2.2. A non-singular matrix P ∈ F[∂;σ, δ]n×n

is in Popov form if LM(P ) is unit lower triangular and the
degrees of off-diagonal entries of P are strictly less than the
degree of the diagonal entry in the same column.

Note that the definition of Popov form implies the pivot
index of row i is i, 1 ≤ i ≤ n.

A matrix in Popov form is row reduced but the converse
is not true. This is classical for matrices over F[x], see [13,
Section 6.3.2]. For the extension to matrices over F[∂;σ, δ],
see [2, Lemma A.1 (a)]. The last item is often called the
Predictable Degree Property.



Theorem 2.3. Let A ∈ F[∂;σ, δ]n×n be non-singular. Then
the following are equivalent:

(1) A is row reduced.
(2) Among all matrices that are left equivalent to A, the

list of row degrees of A, when sorted in non-decreasing
order, will be lexicographically minimal.

(3) For any v⃗ ∈ F[∂;σ, δ]1×n, we have

deg(v⃗A) = max
i=1,...,n

(deg rowiA+ deg vi) .

Lemma 2.4. If A,U, P ∈ F[∂;σ, δ]n×n, all non-singular
and U invertible and P in Popov form such that UA = P ,
then degU ≤ (n− 1) degA.

Proof. By Item 3 of Theorem 2.3, then degU−1 ≤ degA
since the degree of each row of P is non-negative. By [7,
Corollary 3.3] then U = (U−1)−1 has degree at most (n −
1) degA. □

The following notion is a measure for how far A is from
being row reduced:

Definition 2.5. Let A ∈ F[∂;σ, δ] and non-singular. The or-
thogonality defect of A, denoted OD(A), is given as

∑
rdegA−∑

rdegP , where P is the Popov form of A.

Lemma 2.6. If A is row reduced then OD(A) = 0.

Proof. Follows immediately from Theorem 2.3, Item 2.
□

3 WARM-UP: HERMITE FORM OF
MATRICES OVER F[X] VIA
LINEARIZATION

Let A ∈ F[x]n×n be non-singular with degA = d. The Her-
mite form of A is the unique upper trinagular matrix that
is left equivalent to A, has monic diagonal entries, and has
degrees of of off-diagonal entries strictly less than the degree
of the diagonal entry in the same column. Labhalla, Lombardi
and Marlin [14] show how to recover H by transforming a
matrix over F of dimension (n2d + n − dn) × (n2d + n) to
reduced row echelon form.

Example 3.1. Let F = Z/(7). The input matrix

A =

 3x2 + 6x+ 6 5x2 + 3x+ 3 6x2 + x

5x2 + 5 6x2 + x 5x2 + 2x+ 6

3x+ 5 4x+ 5 5x2 + 2x+ 1

 ∈ F[x]3×3

has Hermite form

H =

 1 4 0
x+ 1 6

x2 + 6x

 ∈ F[x]3×3.

Indeed, the reduced row echeleon form of the Sylvester matrix

3 6 6 5 3 3 6 1
3 6 6 5 3 3 6 1
3 6 6 5 3 3 6 1
3 6 6 5 3 3 6 1
3 6 6 5 3 3 6 1

5 0 5 6 1 5 2 6
5 0 5 6 1 5 2 6
5 0 5 6 1 5 2 6
5 0 5 6 1 5 2 6
5 0 5 6 1 5 2 6

3 5 4 5 5 2 1
3 5 4 5 5 2 1
3 5 4 5 5 2 1
3 5 4 5 5 2 1
3 5 4 5 5 2 1


∈ F15×21

is 

1 4 0 2 1 4 0
1 0 3 6 1 0 4
1 0 4 0 6 5 3
1 0 3 0 0 0 4
1 0 4 0 0 4 3
1 0 3 0 0 0 4
1 0 4 0 0 0 0

1 1 2 2 3 6
1 6 0 2 4 1
1 1 0 0 0 6
1 6 0 0 6 1
1 1 0 0 0 6

1 6 0
1 6 0
1 6 0


∈ F15×21.

The submatrix comprised of the last nonzero row in each
horizontal slice, namely rows 7, 12 and 15, corresponds to a
linearization of the Hermite form.

4 POPOV FORM OF MATRICES OVER
F[∂;σ, δ] VIA LINEARIZATION

In this section we apply the linearization technique to com-
pute the Popov form of F[∂;σ, δ] polynomials. Here we deal
only with the overall correctness of the approach and its
structural properties, while the latter sections give precise
algorithms for the steps as well as cost bounds.

Define the linearization ϕP : F[∂;σ, δ]∗×n 7→ F∗×(n2d+n)

by

ϕP (v⃗) = ϕP

[
v1 · · · vn

]
=

[
[vn]nd · · · [v1]nd · · · [vn]0 · · · [v1]0

]
where [vi]k denotes the coefficient of ∂k of vi ∈ F[∂;σ, δ]∗×1.

Example 4.1. Consider the following example over Z7(z)[∂;σ, δ]
with n = d = 2:

v⃗ = [ ∂2 + (3 + z)∂ + z3 2∂ + (1 + 2z) ]

ϕP (v⃗) = [ 0 0 | 0 0 | 0 1 | 2 (3 + z) | (1 + 2z) z3 ]

Let now Alin be given as the ϕP -image of the vectors

∂j rowi(A) for i = 1, . . . , n and j = 0, . . . , nd−deg rowi(A) ,

ordered by descending degrees and breaking ties by the i in-
dex. Then we can write Alin uniquely in block upper triangular
form as

Alin =


Bnd

Bnd−1

...
B0

 =


Cnd ∗ · · · ∗

Cnd−1 · · · ∗
. . .

...
C0

 , (1)



where each C∗ ∈ F∗×n has no zero rows. Note that the row
space of Alin is in one-to-one correspondence, through ϕP ,
with the set{

n∑
i=1

ui rowiA
∣∣∣ui ∈ F[∂;σ, δ], deg ui ≤ nd− deg rowiA

}
.

(2)

Lemma 4.2. If A is non-singular, then Alin has full row
rank and row dimension n2d+n−

∑
rdegA. For d ≤ t ≤ nd,

Bt (and Ct) has exactly n rows.

Proof. Alin has full row rank, since any F-linear relation
between rows of Alin maps to an F[∂;σ, δ]-linear relation
between rows of A through ϕP and by the definition of Alin.
No such relation exists since A is non-singular. The i’th row
of A is represented in exactly nd− deg rowi(A)+ 1 of the Bt,
so the row dimension of Alin becomes as claimed. This also
shows that Bt has n rows when t ≥ d since every row of A is
represented. □

We say the pivot of a vector v⃗ ∈ F1×(n2d+n) is the index of
the left-most non-zero element of v⃗ (not to be confused with
the pivot of a vector over F[∂;σ, δ], see Section 2). Define
η : {1, . . . , n} × Z≥0 → {1, . . . , n2d+ n} as the map between
(pivot, degree) of vectors from F[∂;σ, δ]1×n and the pivot in

vectors from F1×(n2d+n) induced by ϕP , that is,

η(i, d′) = n(nd− d′) + n+ 1− i .

For a vector v⃗ ∈ F1×(n2d+n) we say that the P-pivot and
P-degree of v⃗ are the first and second components of the
2-tuple η−1(i), where i is v⃗’s pivot.

Now let Rlin be the reduced row echelon form of Alin. Then
Rlin can also be written uniquely in block upper triangular
form as

Rlin =


Tnd ∗ · · · ∗

Tnd−1 · · · ∗
. . .

...
T0

 , (3)

where each T∗ ∈ F∗×n has no zero rows. Note that those
rows in Rlin with P -degree t are contained in the submatrix
of Rlin occupied by Tt. Because Rlin is in echelon form, for
any given degree t and pivot i, there is at most one row in
Rlin with P -degree t and P -pivot i, and any row in the row
space of Rlin with P -degree t and P -pivot i will be a linear
combination of this row, and possibly rows below it.

Theorem 4.3. Let A be non-singular, and let Rlin be the
reduced row echelon form of Alin. Then the Popov form P of
A is the matrix whose i’th row is the ϕ−1

P -image of the row
of Rlin with minimal P-degree having P-pivot i.

Proof. The unique unimodular matrix U ∈ F[∂;σ, δ]n×n

with UA = P has degU ≤ (n − 1)d by Lemma 2.4, and
therefore the ϕP -linearized rows of P are contained in the
row space of Rlin. We will prove that they in fact appear
directly as rows of Rlin. By the minimality of the row degrees
of the Popov form, Item 2 of Theorem 2.3, the rows chosen
as in the theorem must therefore be exactly those rows of
Rlin.

So for 1 ≤ i ≤ n, consider the i’th row p⃗ of P , which has
pivot i. Since ϕP (p⃗) is in the row space of Rlin, there must be
exactly one row r⃗k of Rlin with the same pivot, with row index
k. If w⃗ is the unique vector over F satisfying w⃗Rlin = ϕP (p⃗)
then clearly wk = 1 and wj = 0 for j < k. We claim wj = 0
also for j > k in which case r⃗k = ϕP (p⃗) as we wanted to
prove. Suppose, to arrive at a contradiction, that wj ̸= 0
for some j > k, and let r⃗j be the j’th row of Rlin. Since all
other rows of Rlin are zero at the pivot position of r⃗j , that
means deg pi,j′ ≥ d′, where j′, d′ are the P -pivot respectively

P -degree of r⃗j . On the other hand, since the ϕ−1
P (r⃗j) is

in the row space of A and has pivot j′, the minimality of
the degrees of the Popov form implies d′ ≥ deg pj′,j′ . But
then deg pi,j′ ≥ deg pj′,j′ , which contradicts that P is in
Popov form. We conclude that wj = 0 for j > k, and hence
ϕP (p⃗) = r⃗k. □

Example 4.4. For clarity, we exemplify the approach with
a usual polynomial ring, i.e. σ = id and δ = 0. Consider the
input A ∈ F[x]3×3 from Example 3.1, F = Z/(7). Then

Alin =



6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5


∈ F15×21.

(4)
The row reduced echelon form of Alin is

Rlin =



1 6 6 2 0 0
1 2 4 6 3 6 5

1 0 6 2 4 1
1 2 4 2 5 3

1 0 6 0 0
1 2 0 0 0

1 6 0 0
1 0 6 5
1 0 4 1
1 6 0 0
1 6 1 2
1 4 3 6

1 6 5
1 4 1

1 2


.

We pick out the the rows of Rlin with minimal degree having
P-pivot 1, 2, and 3, respectively. The Popov form of A is thus

ϕ−1
P

[
1 4 1

1 2
1 6 0 0

]
=

x+ 1 0 4
2 1 0
0 0 x2 + 6x

 .

We now consider some structural properties of Alin and Rlin.
Recall that we have written Alin as a block upper triangular
matrix

Alin =


Cnd · · · ∗ ∗ · · · ∗

. . .
...

...
. . .

...
Ck+1 ∗ · · · ∗

Ck · · · ∗
. . .

...
C0





with each C∗ of column dimension n and with no zero rows.
Let {a1, a2, . . . , an} be the multi-set of row degrees of A. The
following lemma follows from the definition of Alin.

Lemma 4.5. For k = 0, 1, . . . , nd, the trailing submatrixCk · · · ∗
. . .

...
C0


of Alin has row dimension (k + 1)n−

∑n
i=1 min(ai, k + 1).

We have also written Rlin in a block upper triangular form
as

Rlin =


Tnd · · · ∗ ∗ · · · ∗

. . .
...

...
. . .

...
Tk+1 ∗ · · · ∗

Tk · · · ∗
. . .

...
T0


where each T∗ ∈ F∗×n has no zero rows. Let {p1, p2, . . . , pn}
be the multi-set of row degrees in the Popov form of A. The
following lemma follows as a corollary of Theorem 4.3.

Lemma 4.6. For k = 0, 1, . . . , nd, the trailing submatrixTk · · · ∗
. . .

...
T0

 (5)

of Rlin has row dimension at most (k+1)n−
∑n

i=1 min(pi, k+
1).

For k = 0, 1, . . . , nd, define ODk to be the row dimension
of the left nullspace of the principal submatrixCnd · · · ∗

. . .
...

Ck+1

 (6)

of Alin. Recall that OD(A) :=
∑

rdegA−
∑

rdegP .

Theorem 4.7. For k = 0, 1, . . . , nd we have ODk ≤ OD(A).

Proof. Let P be a permutation, and U be a unit lower
triangular non-singular matrix over F that such that premul-
tiplying (6) by UP transforms it to echelon form[

Rk+1

]
with ODk zero rows. Then applying diag(U, I) to Alin yields

[
U

I

]

Cnd · · · ∗ ∗ · · · ∗

. . .
...

...
. . .

...
Ck+1 ∗ · · · ∗

Ck · · · ∗
. . .

...
C0

 =


Rk+1 ∗ · · · ∗

Ek · · · ∗
Ck · · · ∗

. . .
...
C0

 ,

(7)
where Ek ∈ FODk×n. Considering that Alin has full row rank,
the row dimension of the submatrixEk · · · ∗

Ck · · · ∗
. . .

...
C0

 (8)

of the matrix on the right of (7) will be equal to the row
dimension of the trailing submatrix (5) of Rlin. Lemmas 4.5
and 4.6 now give

ODk ≤
n∑

i=1

min(ai, k + 1)−
n∑

i=1

min(pi, k + 1)

=

n∑
i=1

(min(ai, k + 1)−min(pi, k + 1)).

Assume now that a1 ≤ a2 ≤ · · · ≤ an and p1 ≤ p2 ≤ · · · pn.
Then ai −pi ≥ 0 for i = 1, 2, . . . , n by Item 2 of Theorem 2.3,
and

min(ai, k+1)−min(pi, k+1)


= ai − pi if ai ≤ k + 1
= 0 if ai > k + 1 an pi ≥ k + 1
< ai − pi if ai > k + 1 and pi < k + 1

.

Thus min(ai, k + 1) − min(pi, k + 1) ≤ ai − pi in all cases,
establishing the result. □

5 BLOCK ELIMINATION

Let A ∈ F[∂;σ, δ]n×n be non-singular with degA ≤ d. In
this section we show how to perform a structured Gaussian
elimination of the linearized system Alin over F. We first
consider in Section 5.1 the problem of transforming A to
Popov form when A is already row reduced. Then we consider
the general case in Section 5.2.

5.1 Normalization if already row reduced

We can detect if A is row reduced by testing its leading
coefficient matrix for non-singularity. Suppose A is already
row reduced. Let U be the unique matrix such that UA = P
is in Popov form. By the predictable degree property (Theo-
rem 2.3, item 3) then deg coliU ≤ d−deg rowiA (degP ⩽ d),
1 ≤ i ≤ n. Consider the following submatrix of Alin (1)
comprised of the last n(d+ 1)−

∑
rdegA rows:

Ālin =

 Bd
...
B0

 =

 Cd · · · ∗
. . .

...
C0

 . (9)

Note that the row space of Ālin is in one-to-one correspon-
dence, through ϕP , with the set{

n∑
i=1

ui rowiA
∣∣∣ui ∈ F[∂;σ, δ], deg ui ≤ d− deg rowiA

}
.

As a corollary of Lemma 4.2 we have that Ālin has full row
rank n(d+ 1)−

∑
rdegA. The next theorem is a corollary of

Theorem 4.3.

Theorem 5.1. Let A be non-singular and row reduced,
and let R̄lin be the reduced row echelon form of Ālin. Then
the Popov form P of A is the matrix S whose i’th row is
the ϕ−1

P -image of the row of R̄lin with minimal degree having
P-pivot i.

Because A is row reduced, by Lemma 2.6 we have OD(A) =
0, so by Theorem 4.7 each block C∗ in Ālin will have full row
rank. Since the right block of Ālin has column dimension
n(d + 1), performing standard Gauss Jordan elimination



would cost O((nd)3) operations from F to produce R̄lin in its
entirety. We can save a factor of d by avoiding the complete
computation of R̄lin. Instead, first compute an echelon form
of Ālin by applying Gaussian elimination to each full rank
slice B∗. Gaussian elimination of a single B∗ has cost O(n3d),
yielding a total cost for all slices of O(n3d2) operations in
F. Then use back substitution to reduce the n rows whose
ϕ−1
P -image has minimal degree and P -pivot i, 1 ≤ i ≤ n. This

costs an additional O(n3d2). Finally, scale these n rows so
their pivots are equal to one. We obtain the following result.

Theorem 5.2. Let A ∈ F[∂;σ, δ]n×n be non-singular and
row reduced, with degA ≤ d. The Popov form of A can be
computed within the following cost:

• Computing ∂k rowiA for 1 ≤ k ≤ d − deg rowiA,
1 ≤ i ≤ n.

• An additional O(n3d2) operations from F.

5.2 General case

Now assume that A is not already row reduced, so that OD :=
OD(A) > 0. The key observation is that since degP ≤ d, the
ϕP -linearization of the rows of P will be contained in the
row space of the trailing submatrix (5) of Rlin for k = d. This
implies that the rows of Rlin occupied by Tnd, Tnd−1, · · · , Td+1

are not required.
Our algorithm for performing the elimination of Alin has

three phases. The first phase computes the matrix (8) for
k = d, whose row space is equal to that of (5) for k = d. The
second phase transforms this matrix to row echelon form.
The third phase performs back substitution to reduce the
n rows whose ϕ−1

P -image has minimal degree and P -pivot i,
1 ≤ i ≤ n.

Our main computation tool is the Gauss transform [18,
Section 2.3]. Given as input a matrix[

Ek

Ck

]
∈ FO(OD+n)×n, (10)

the so called Gauss transform algorithm [18, Algorithm 2.14]
can be used to produce a permutation matrix Pk and unit
lower triangular matrix Uk such that

Uk︷ ︸︸ ︷[
Fk

Nk I

]
Pk

[
Ek

Ck

]
=

[
Gk

]
,

where
[
Nk I

]
Pk and Gk are the left nullspace basis and

a row echelon form, respectively, of the input matrix (10).
Phase 1: For convenience, let E0 be the 0 × n matrix.

We will compute a Gauss transform as described above for
k = nd, nd − 1, . . . , d + 1. At the start of stage k we are
exactly in the situation shown in (7). The key observation is
that no entries in the rows occupied by R are required, and
so the computation of these rows can be avoided. To go from
stage k to k + 1 we can thus apply only the nullspace to the
next slice and obtain[
Nk I

]
Pk

[
Ek ∗ · · · ∗
Ck ∗ · · · ∗

]
=

[
Ek−1 · · · ∗

]
.

Continue this for k = nd, nd− 1, . . . , d+ 1.
Phase 2: For k = d, d− 1, . . . , 0, we apply the complete

Gauss transform to the work matrix:

UkPk

[
Ek ∗ · · · ∗
Ck ∗ · · · ∗

]
=

[
Gk ∗ · · · ∗

Ek−1 · · · ∗

]
.

Repeating this for k = d, d− 1, . . . , 0, we have computed the
row echelon form

G =

 Gd · · · ∗
. . .

...
G0

 ∈ F∗×n(d+1).

Phase 3: Identify for i = n, n − 1, . . . , 1, the row in G
whose ϕ−1

P -image has minimal degree and P -pivot i, and use
back substitution to zero out the entries in this row which
are above a pivot, similar to how we proceeded in Section 5.1.
Finally, scale these n rows to make their pivots equal to one.

Example 5.3. Consider the input matrix

A =

[
7x2 + 3x+ 8 9x2 + 7x+ 4 x2 + 2x+ 2

3x2 + 4 7x2 + 6x+ 8 5x2 + 10x
3x2 + 2x+ 5 7x2 + 5x+ 1 4x2 + 8x+ 5

]
∈ Z/(11)3×3.

Then

Alin =

C6 ∗ ∗ ∗ ∗ ∗ ∗
C5 ∗ ∗ ∗ ∗ ∗

C4 ∗ ∗ ∗ ∗
C3 ∗ ∗ ∗

C2 ∗ ∗



=



1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5


For Phase 1, step k = 6 we compute and apply the nullspace
of C6 to obtain

 E5 ∗ ∗ ∗ ∗ ∗
C5 ∗ ∗ ∗ ∗ ∗

C4 ∗ ∗ ∗ ∗
C3 ∗ ∗ ∗

C2 ∗ ∗

 =


0 0 0 0 4 8
1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5• • •• • •• • •


Phase 1, step k = 5 we compute and apply the nullspace of
the 4× 3 matrix occupied by E5 and C5 to obtain

[
E4 ∗ ∗ ∗ ∗
C4 ∗ ∗ ∗ ∗

C3 ∗ ∗ ∗
C2 ∗ ∗

]
=



0 4 8
0 0 0 0 4 8
1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5


We continue Phase 1 steps k = 4, 3 with nullspace application.
Then we switch to Phase 2. For Phase 2 steps k = 2, 1, 0 we



apply the entire Gauss transforms, yielding the echelon form

[
G2 ∗ ∗

G1 ∗
G0

]
=


1 9 7 2 7 3 2 4 8
1 10 3 8 2 0 0 0

1 10 1 3 0 0 0
1 2 0 0 0
1 10 1 3

1 2

 .

In Phase 3, we identify the Popov rows (rows 1, 5 and 6 in
this example) and then do back substitution:

1 2 2 0
1 10 3 8 2 0 0 0

1 10 1 3 0 0 0
1 2 0 0 0
1 10 1

1 2

 .

The Popov form of A is thus

ϕ−1
P

[
1 10 1

1 2
1 2 2 0

]
=

[
x+ 1 0 10
2 1 0
0 0 x2 + 2x+ 2

]
.

The next theorem gives a cost analysis of the algorithm
just described in terms of operations from F. The theorem
gives three cost estimates. First, we give an unconditional
cost estimate based only on the input parameters n and d.
Second, we give a refined cost estimate in terms of OD. Third,
we consider the case of special Ore rings (such as the shift
case) for which the matrix Alin may have the shape shown
in Example 4.4, that is, with a large block upper triangular
submatrix of zeroes in the northeast corner: the cost estimates
are improved by a factor of n in this case.

Theorem 5.4. Let A ∈ F[∂;σ, δ]n×n be non-singular with
degA ≤ d. The Popov form of A can be computed within the
following costs.

(1) General case:
• Computing ∂k rowiA for 1 ≤ k ≤ nd−deg rowiA,

1 ≤ i ≤ n.
• Additional O(nω+2d3) field operations from F.

(2) A more refined cost is obtained by considering the
parameter OD. Assume that A is not already row
reduced, so that OD := OD(A) > 0. Then the number
of additional operations is reduced to:

• O(ODω−2n4d2) if OD < n
• O(ODnω+1d2) if OD ≥ n

(3) Finally, suppose that the Ore ring F[∂;σ, δ] has the
property that for any nonzero element f ∈ F[∂;σ, δ],
the trailing degree of ∂f is at least one more than
the trailing degree of f . Then the O-estimate in part
1 is reduced by a factor of n, and the O-estimates in
part 2 become

• O(nω+1d+ ODω−2n3d2) if OD < n
• O(ODnωd2) if OD ≥ n

Proof. We first establish part 2 of the theorem. By The-
orem 4.7, the row dimension of each nullspace N∗ is bounded
by OD. Instead of considering the three phases separately, we
will partition the computational work done as follows. The
nullspace Nk is applied for all k, 0 ≤ k ≤ nd, but the unit
lower triangular block Fk is applied only for 0 ≤ k ≤ d. Also
note that for k ≤ d, the column dimension of the slice to
which Fk is being applied to is bounded by (d + 1)n. The

application of the permutations P∗ do not dominate the cost.
We can thus partition the computational work as follows.

A Gauss transform: at most nd+ 1 times, compute a
Gauss transform of a matrix bounded in dimension
O(OD+ n)× n.

B Nullspace application: at most nd+1 times, multiply
an O(OD)× n matrix by an n×O(n2d) matrix.

C Computing the echelon form: at most d + 1 times,
multiply an O(n)×O(n) matrix by a O(n)×O(nd)
matrix.

D Back substitution: O(n3d2) operations.

Since the rank of the input matrix (10) is bounded by its col-
umn dimension n, the cost of computing (Uk, Pk) for a given
k is bounded by O((OD+ n)nω−1) by [18, Proposition 2.15].
This gives a total cost for (A) of O((OD + n)nωd). Using
an obvious block decomposition, (C) can be done in time
O(nωd2).

It remains to bound the cost of (B). There are two cases,
depending on whether OD ≤ n or OD > n. Using an obvious
block decomposition, a single nullspace application has cost
O(ODω−2n3d) if OD ≤ n and O(ODnωd) otherwise. The
total cost for (B) is thus O(ODω−2n4d2) if OD ≤ n and
O(ODnω+1d2) if OD > n. In both cases these upper bounds
for the cost of (B) dominate the cost bounds for (A), (C) and
(D).

Part 1 of the theorem follows by substituting the a priori
upper bound OD ≤ nd into the O-bound in part 2 for the
case OD ≥ n.

For part 3, note that the (nonzero part) of the slice to
which the nullspace is applied will now have dimension O(nd)
instead of O(n2d). The cost estimates for the work in part
(B) are thus reduced by a factor of n, but this still dominates
the cost of parts (A), (C) and (D) in case OD ≥ n. If OD < n
then part (A) costs O(nω+1d) which might dominate the cost
of part (B). □

6 FRACTION FREE BLOCK
ELIMINATION

Now consider the case when all entries in Alin are coming from
an integral domain, for example F = k(z) for a field k but all
entries are in F[z], or even Z[z] when k = Q. It is desirable
in this setting to keep all intermediate quantities in the
computation integral, while at the same time controlling their
growth. The classic technology for this purpose in the linear
algebra setting is fraction-free Gaussian elimination [1, 6].
To take advantage of the block upper triangular shape of
Alin we could directly apply a sparse variant of fraction-
free Gaussian elimination [15]. In this section we show how
to incoporate matrix multiplication. The Gauss transform
algorithm [18, Algorithm 2.14] is actually designed to do
fraction-free Gaussian elimination, and because of its column
recursive formulation, is well suited to the elimination of Alin.

The incorporation of fraction-free techniques into the al-
gorithm supporting Theorem 5.4 is straightforward. For
k = nd, nd − 1, . . . ,−1, the fraction-free Gauss transform



algorithm also computes ∆k, the minor of Rk in (7) com-
prised of its rank profiles columns. To start the process set
∆nd+1 = 1 since Rnd+1 is the 0× 0 matrix, and recall that
End is the 0× n matrix. At step k we have the scaled matrix

∆k+1

[
Ek ∗ · · · ∗

]
from the previous step, together with ∆k+1. The rows of Alin

occupied by Ck are premultiplied by ∆k+1 to form the next
slice

∆k+1

[
Ek ∗ · · · ∗
Ck ∗ · · · ∗

]
, (11)

which will be fraction-free, that is, all entries are minors of
Alin of dimension bounded by one plus the rank of Rk+1.
(We remark that only scaling the rows of Alin that will be
involved in the next elimination step is important for the
complexity, and similar to [15].) At stage k, the fraction-free
Gauss transform takes as input (11), together with ∆k+1,
and returns as output the permutation Pk and the scaled
matrix

Ūk =

[
F̄k

∆kNk ∆kI

]
, (12)

together with ∆k. The matrix F̄k is equal to the unit lower
triangular Fk from before but with each row scaled by a
certain minor of Alin which is known a priori to clear any
denominators. The output (12) is also fraction-free, that is,
all entries are minors of Alin of dimension bounded by the
rank of Rk. The nullspace applications in Phase 1 can now
be done in a fraction-free fashion as

1

∆k+1

((
∆k

[
Nk I

]
Pk

)(
∆k+1

[
Ek ∗ · · · ∗
Ck ∗ · · · ∗

]))
yielding

∆k

[
Ek−1 · · · ∗

]
.

Similarly, in Phase 2 the entire Gauss transform is applied.
The back substitution in Phase 3 can be done iteratively in
a fraction-free fashion also [1].

Using the fraction-free approach, all intermediate quanti-
ties arising during the elimination (i.e., the entries of (11)
and (12)) will thus be minors of Alin. We recall some well
known a priori bounds for the size of these minors for some
common cases. We will use size and size for the bounds for
Alin and Ālin (9) respectively.

• F = k[z] with degz Alin, degz Ālin ≤ e. Multiplying
the row dimension of Alin and Ālin by e gives explicit
bounds for the degrees sizek[z] and sizek[z] of minors

of Alin and Ālin that satisfy

sizek[z] ∈ O(n2de)

and

sizek[z] ∈ O(nde).

• F = Z with the magnitude of entries of Alin and Ālin

bounded by β. Hadamard’s inequality [11, Corol-

lary 7.82] gives an explicit bound 2sizeZ and 2sizeZ for
the magnitudes of minors of Alin and Ālin that satisfy

sizeZ ∈ O(n2d log(ndβ))

and

sizeZ ∈ O(nd log(ndβ)).

• F = Z[z] with degz A ≤ e, and with the magni-
tude of integer coefficients of entries of Alin and Ālin

bounded by β. Multiplying the determinant degree
bound above with the logarithm base 2 of an explicit
magnitude bound for the coefficients [8] gives

sizeZ[z] ∈ O(n4d2e log(ndeβ))

and

sizeZ[z] ∈ O(n2d2e log(ndeβ)).

Now let M be a multiplication time for k[z], that is, two
polynomials from k[z] with degree strictly less than t can
be multiplied in M(t) operations from k. Then over k[z] a
cost estimate in terms of operations from k is obtained by
multiplying the algebraic cost estimates of Theorem 5.4 by
M(sizek[z]). Note that the polynomial multiplication can be
done modulo zp for p = 2 sizek[z]+1 to control degrees during
the fast matrix multiplications.

If M is a multiplication time for Z, that is, two integers
with bit-length bounded by t can be multiplied with M(t) bit
operations, then a cost estimate in terms of bit operations
for the cases Z and Z[z] are obtained by multiplying the
algebraic cost estimates by M(sizeZ) and M(sizeZ[z]). Note
that for the Z[z] case we can use Kronecker substitution [9]
to reduce the integer polynomial multiplication to integer
multiplication. Similar to the case k[z], the multiplication
can be done modulo 2p for an appropriate p ∈ O(sizeZ[z]).
We remark that faster algorithms for polynomial matrix [4]
and integer matrix [10] multiplication are avaiable.

6.1 Cost analysis for some common Ore
rings

Let A ∈ F[∂;σ, δ]n×n be non-singular with degree d. First
consider the case F = k(z). We will assume that A has entries
over k[z]. This can be achieved by clearing denominators,
if necessary. As in [7], we will assume that σ(z) ∈ k[z] and
degz δ(z) ≤ 1. Then ∂z = σ(z)∂ + δ(z) ∈ k[z][∂] and the
degree in z and in ∂ remains unchanged. The linearized
systems will thus be over k[z], allowing application of our
fraction-free algorithm.

Theorem 6.1. Let A ∈ k[z][∂;σ, δ]n×n be non-singular
with degA ≤ d and degz A ≤ e. If A is row reduced, this can
be detected and the Popov form of A computed in O(n3d2 M(nde))
operations from k. If A is not row reduced, then cost estimates
in term of operations from k for computing the Popov form
are obtained by multiplying the O-estimates from Theorem 5.4
by M(n2de).

Proof. To test if A is row reduced we can check if its
leading coefficient matrix is non-singular. This check will
not dominate the cost. The theorem now follows from Theo-
rems 5.1 and 5.4 and the estimates for sizek[z] and sizek[z]. □

Now consider the case F = Q(z). As before, we will assume
that A has entries over Z[z]. Then A has entries polynomials



in ∂ whose coefficients are polynomials in Z[z]; let ||A||∞
denote the largest in absolute value of any (integer) coefficient
of any of these Z[z] coefficients.

Theorem 6.2. Let A ∈ Z[z][∂;σ, δ]n×n be non-singular
with degA ≤ d and degz A ≤ e. Suppose our Ore ring is
either the differential polynomials (where σ(z) = z, δ(z) = 1)
or the shift polynomials (where σ(z) = z + 1, δ(z) = 0). If
A is row reduced, this can be detected and the Popov form
of A can be computed in O(n3d2) operations with integers
bounded in length by O (̃n2d2e(log ||A||∞ + e)) bits. If A is
not row reduced, then cost estimates for comuting the Popov
form in terms of operations on integers bounded in length by
O (̃n4d2e(log ||A||∞ + e)) bits are given by Theorem 5.4.

Proof. As mentioned in Section 6, we can use Kronecker
substitution to reduce arithmetic operations from Z[z] to
integer arithmetic. As before, we can test if A is row re-
duced by checking if its leading coefficient matrix is non-
singular using fraction-free gaussian elimination. From the
proof of [7, Corollary 5.9] we have that log β := log ||Alin||∞ ∈
O(log ||A||+ e log(nd)). The theorem now follows from Theo-

rems 5.1 and 5.4 and the estimates for sizeZ[z] and sizeZ[z]. □

7 CONCLUSION

For the shift and differential Ore rings we bound the bit
complexity of our algorithm when the input matrix is over
Z[z]. Our algorithm is faster than the row reduction algorithm
of [5], which however handles the important case of non-
square and singular inputs which we do not. Our approach
still works for rectangular and rank deficient matrices (of
any dimensions) but the complexity could be much higher.
Making the algorithm as efficient for rectangular and rank
deficient matrices is left for future work.
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