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Abstract— We decode Reed-Solomon codes using soft in-
formation provided at the receiver. The Extended Euclidean
Algorithm (EEA) is considered as an initial step to obtain
an intermediate result. The final decoding result is obtained
by interpolating the output of the EEA at the least reliable
positions of the received word. We refer to this decoding method
as reduced list-decoding, since not all received positions are used
in the interpolation as in other list-decoding methods, such as
the Guruswami-Sudan and Wu algorithms. Consequently the
complexity of the interpolation step is reduced considerably.
The probability of failure can be minimised by adjusting
certain parameters, making it comparable with the Kötter-
Vardy algorithm but having a much lower complexity.

I. INTRODUCTION

Polynomial-time list-decoding of algebraic codes has been
a lively research field for the last 15 years, since the Sudan
algorithm [1], and the generalisation of the Guruswami–Sudan
algorithm (GSA) [2] demonstrated that such algorithms exist
for Reed–Solomon codes. The GSA corrects up to the Johnson
bound n −

√
n(n− d), which is a great improvement for

low-rate codes; unfortunately a quite modest one for high-rate
codes.

Also for Reed–Solomon codes, Wu [3] presented an ana-
lytic extension of the classical Berlekamp–Massey algorithm
(BMA) where decoding is done by “rational interpolation”
using information from the output of the BMA, in case half the
minimum distance-decoding fails. The decoding radius turns
out to be exactly the Johnson bound again. The Wu algorithm
first finds the error positions and can then by different means
obtain the codeword or information, while the GSA finds
the information word directly. The Wu algorithm has worse
complexity than the GSA for low-rate codes but better for
medium to high-rate, though the asymptotic expressions are
roughly the same [4]. It has since been shown how the initial
step of the Wu decoder can be put into a more algebraic
framework and e.g. be carried out by the Extended Euclidean
Algorithm (EEA), see [5], [6].

The above algorithms are both hard-decision decoders. The
Kötter–Vardy (KV) algorithm [7] is a generalisation of the
GSA which incorporates soft information. This celebrated
algorithm has good performance but at the cost of relatively
high complexity.

We present here a novel soft-decision list-decoder which
generalises the Wu list-decoder (albeit in a different way than
the KV from the GSA). Our algorithm achieves a decoding
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performance close to that of the KV but retains a much
lower complexity. The core idea is to use the soft information
to restrict the positions on which to perform the expensive
rational interpolation. We don’t need to “catch” all errors in
this restricted position set, but only some fraction of them,
rendering the method fairly resilient to the quality of the
reliability information.

Though our method returns a list of possible codewords,
it is not similar to hard-decision list-decoding where the list
contains all codewords in a certain radius. Similar to the KV,
the codewords in our list depend on the reliability information
extracted from the received word.

We start with a few definitions and notation in Section
II. After that, we revisit the hard-decision Wu decoder in
Section III, since it helps describe and understand our method.
In Section IV, we study the reliability information used for
decoding. For our simulations we have used a specific channel
model and a particular method for calculating the reliability
which is explained in detail. We then give the novel reduced
list-decoder in Section V. Finally, in Section VI, we discuss
simulation results and conclude.

II. DEFINITIONS AND NOTATIONS

Let q be a power of a prime, Fq the finite field of order q.
For a, b ∈ R, we use the notation [a; b] = {x ∈ R | a ≤ x ≤
b}.

Definition 1 (Generalised Reed–Solomon (GRS) code) A
GRS(n, k, d) code over a finite field Fq with d = n− k + 1
is the set{(
v0C(α0), . . . , vn−1C(αn−1)

)
| C(x) ∈ Fq[x]∧degC(x) < k

}
for some n distinct α0, . . . , αn−1 ∈ Fq as well as n non-zero
v0, . . . , vn−1 ∈ Fq .

The αi are called evaluation points and the vi column
multipliers.

Let c = (c0, c1, . . . , cn−1) ∈ GRS be a codeword sent
by the transmitter. The receiver obtains r = c + e ∈ Fnq
as a hard-decision received word, where e is an error. The
transmission model is explained in detail in Section IV-A,
where we describe the nature of the reliability information
accompanying r. The error positions, i.e. the indexes where
e is non-zero, are denoted by E = {i | ci 6= ri} where ri
are the elements of r. The number of errors in r are denoted
ε = |E|. Our decoder is based on the Key Equation, where
we, instead of seeking e or c directly, find two polynomials
which encode e:



Definition 2 The error locator Λ(x) and the error evaluator
Ω(x) are

Λ(x) =
∏
i∈E

(x− αi),

Ω(x) =
∑
i∈E

eiv̂i
∏

j∈E\{i}

(x− αj).

where v̂i = (vi
∏
h6=i(αi − αh))−1.

Note that Ω(x) and Λ(x) are coprime, and that ε =
deg Λ(x) > deg Ω(x).

At the receiver, the syndrome polynomial S(x) is calculated
based on r:

S(x) =

n−k−1∑
i=0

xi
n−1∑
j=0

rj v̂jα
d−2−i
j . (1)

One can show that these polynomials are related by the
Key Equation (see e.g. [8, p. 362]):

Λ(x)S(x) ≡ Ω(x) mod xd−1. (2)

When ε < d/2, then the above equation can be used to
determine Λ(x) and Ω(x) directly, e.g. by using the BMA
[9, Ch. 7] or the EEA [8, p. 362], [10]. Here we focus on the
latter. At the core of Wu’s list-decoder is the observation that
even when ε ≥ d/2, the result of running either the BMA or
EEA still reveals crucial information about Λ(x). Wu proved
these properties for the BMA [3]; a similar approach can
be used for the EEA, or one can use the theory of Gröbner
bases of Fq[x]-modules. For our purposes, the properties can
be summed up in the following result, paraphrased from [6,
Proposition 5 and Section IV.B]:

Proposition 1 If the EEA is run on xd−1 and S(x) and
halted at a certain iteration, we can extract from the
intermediate polynomials at this point coprime polynomials
H1(x) and H2(x) which satisfy1:

Λ(x) = A(x)H1(x) +B(x)H2(x), (3)

where A(x) and B(x) are unknown polynomials satisfying

degA(x) = deg Λ(x)− degH1(x),

degB(x) ≤ deg Λ(x)− d+ degH1(x).

In case of ε < d/2, we see degA(x) + degB(x) < 0 so
at least one of them is zero. By some further properties of
H1(x) and H2(x) one can show that it must be B(x) = 0,
and that degA(x) = 0, which means Λ(x) equals H1(x) up
to a constant factor. This is exactly classical hard-decision
decoding up to half the minimum distance.

Wu generalised the noisy polynomial interpolation method
by Guruswami and Sudan [2] into one for rational expressions.

1More explicitly, recall that the Euclidean algorithm calculates quotients
Qi(x) and remainders Ri(x) (i being the iteration index) [10]. The EEA
represents any remainder in the form of Ri(x) = Ui(x)S(x) mod xd−1,
where the Ui(x) can be calculated recursively using the quotients Qi(x).
Then H1(x) = Ui(x) and H2(x) = Ui−1(x) for a particularly chosen
iteration i.

We describe in the next section how this applies to finding
A(x) and B(x) when ε ≥ d/2, but first we describe the
general interpolation problem and solution. Loosely, we can
phrase the goal as follows: given points (xi, βi) for i =
1, . . . , N , one seeks two polynomials f1(x), f2(x) ∈ Fq(x)

and f1(xi)
f2(xi)

= βi holds for many, but not necessarily all,
values of i, and such that deg f1(x) and deg f2(x) are both
small. To properly handle that f2(x) might have roots among
the xi, Trifonov [5] suggested to consider the βi as partially
projective points (yi : zi) ∈ P1

Fq
, i.e. that (yi : zi) = (λyi :λzi)

for all λ ∈ F?q and where (0 : 0) is disallowed.
The ingenious way to solve the problem is to construct

a polynomial Q ∈ Fq[x][y, z], homogeneous in y and z, in
such a way that it is guaranteed that Q(f1, f2) = 0. The
f1(x), f2(x) can then be extracted from Q as roots, which is
possible since y and z are homogeneous in Q. More precisely,
the following theorem is a paraphrasing of [5, Lemma 3]:

Theorem 1 (Rational Interpolation)
Let `, s and T be positive integers, and let
{(x0, y0 : z0), (x1, y1 : z1), . . . , (xN−1, yN−1 : zN−1)}
be N ≥ T points in Fq × P1

Fq
. Assume Q(x, y, z) =∑`

i=0Q(x)yiz`−i is non-zero and such that (xi, yi : zi)
are zeroes of multiplicity s for all i = 0, . . . , N − 1, and
deg(1,w1,w2)Q(x, y, z) < sT , for two w1, w2 ∈ R+ ∪ {0}.
Any two coprime polynomials f1(x), f2(x) satisfying
deg f1(x) ≤ w1,deg f2(x) ≤ w2, as well as,
zif1(xi) + yif2(xi) = 0 for at least T values of i,
will satisfy Q(x, f1(x), f2(x)) = 0.

In the above, deg(wx,wy,wz) is the (wx, wy, wz)-weighted
degree, i.e. deg(wx,wy,wz) x

iyjzh = wxi + wyj + wzh and
for polynomials, it is the maximal weighted degree of its
monomials.

The two integers ` and s, often referred to as the list
size and multiplicity respectively, are not part of the rational
interpolation problem one wishes to solve, but should simply
be chosen in such a way to make it possible to construct the
Q-polynomial. One can regard the root-requirements to Q
as a linear system of equations in the monomials of Q, and
the weighted degree constraints as a bound on the number of
monomials available. This gives a bound on the parameters
on when it is guaranteed that a satisfactory Q exists. By
analysis one can then conclude that this is the case whenever

T 2 > N(w1 + w2). (4)

Such an analysis along with precise choices of s and ` can
be found in [5] or in more detail in [4, Proposition 5.7]. In
the latter, it is also proved that s and ` can be chosen such
that a satisfactory Q exist under the additional requirement
`
s ≥

T
w ; a subtle fact which we need.

III. REVIEW OF WU LIST-DECODING

The hard-decision Wu list-decoder is now simply com-
bining Proposition 1 with the tool of rational interpolation,
Theorem 1.



For this, the basic observation is that Λ(x) evaluates to
zero at all the error locations. Thus, by Proposition 1, we get
for i ∈ E that

A(αi)H1(αi) +B(αi)H2(αi) = 0.

In other words, if we define (xi, yi : zi) =(
αi, H1(αi) :H2(αi)

)
for i = 1, . . . , n, then finding

A(x) and B(x) is exactly a rational interpolation problem
with N = n and T = ε. Assuming that we knew the number
of errors ε, (4) then tells us that we can find a Q such that
Q(A(x), B(x)) = 0 – and therefore solve this problem – as
long as:

ε2 > n(2ε− d) ⇐⇒ ε < n−
√
n(n− d).

This is the Johnson bound, which is also the decoding radius
of the GSA.

A caveat is of course that we do not know the number
of errors. The solution turns out to be surprisingly simple:
we choose some decoding radius τ < n−

√
n(n− d), and

we then construct a Q-polynomial for the worst possible
case, i.e. we set T = τ . It turns out that it can be shown
– see e.g. [6, Lemma 7] – that this Q-polynomial is also a
valid interpolation polynomial for the rational interpolation
problem where T = ε for any ε ≤ τ , provided that `/s ≥ 1.
Note that we are guaranteed to be able to find such ` and
s by our earlier remark since T/w = τ/(2τ − d) > 1 and
τ < d.

In Section V, we see that in the reduced list-decoding
setting, the above concerns become more involved and lead
to surprising behaviour.

The Wu list-decoder therefore consists of several non-trivial
computational steps: the syndrome computation, the EEA,
construction of Q, and root-finding in this Q. In [6], it is
shown how the complexity of all the steps can be completed
in time O(`Msn logO(1)(`n)), where M ≤ 3 is the exponent
for matrix multiplication. This is the same as the fastest
realisations of the GSA, see e.g. [11] or [4, Section 3.2]. One
should be aware that the value of the parameter s differs in
the two methods (but the ` does not), see [4, Section 5.2.2].

The aim of this paper is to let the Wu list-decoder take
advantage of certain reliability information at the receiver,
with the ultimate goal of reducing the complexity of the
decoding while keeping decoding performance high. We now
introduce the form of this reliability information, as well as
the channel model considered in the simulations.

IV. RELIABILITY INFORMATION AND CHANNEL MODEL

Our decoding algorithm works as long as the following
type of received information can be obtained: a hard-
decision vector r ∈ Fnq as well as a reliability vector
η = (η0, . . . , ηn−1) ∈ [0; 1]n, where ηi is a measure of
the probability that ri is the sent codeword symbol ci.

How to obtain these two quantities, and how well the
decoder will then finally perform, depends on the exact
channel model. For this paper, we use binary modulation
over an Additive White Gaussian Noise (AWGN) channel
for simulations. In the following, we describe the relevant
details for this model.

A. Channel Model

We now constrain ourselves to binary extension fields,
i.e. q = 2m. The sender wishes to transmit the codeword c ∈
Fn2m . Using some given basis, he represents each F2m symbol
as a vector in Fm2 , and in turn uses BPSK modulation with 0
mapped to +1 and 1 to −1. The resulting nm symbols over
{−1,+1} which make up c are then individually transmitted
over an AWGN channel.

The received signal has a Signal-to-Noise SNR = Es/(2 ·
N0 ·R), where Es is the energy of a single symbol, N0 is the
single-sided noise energy, and R = k/n is the code rate. The
raw output from the channel to the receiver is then a matrix
y = [yi,j ] ∈ Rn×m, resulting from the sent ±1-symbols
being perturbed by the noise.

B. Reliability Calculation

From y, the receiver can calculate a matrix ρ = (ρi,β) ∈
[0; 1]n×2

m

, where the columns of ρ are indexed by the
elements of F2m , and where ρi,β is a measure of the
probability that ci = β, given the received matrix y. For
BPSK the relation between ρ and y is given by (see [12,
Section 7.4] or [13]):

ρi,β = ln
P (yi|ci = β)∑

l 6=j

P (yi|ci = l)
. (5)

Let zβ = (zβ,0, zβ,k, . . . , zβ,m−1) ∈ {−1,+1}m be the
direct BPSK modulation of β ∈ F2m under the chosen basis
over F2. Since our channel is AWGN and memory-less, the
above becomes:

ρi,β = ln

exp

{
m−1∑
k=0

− 1

2σ2
(yi,k − zβ,k)2

}
∑
l 6=β

exp

{
m−1∑
k=0

− 1

2σ2
(yi,k − zl,k)2

} . (6)

From ρ, the receiver proceeds to extract both r and η.
Firstly, r is chosen as ri = arg maxβ{ρi,β}, i.e. the most
likely symbol for each position, ties broken arbitrarily.

For η, we use the principle from [14]:

ηi = ρ
(1st)
i − ρ(2nd)i ,

where ρ(1st)i = maxi{ρi,β} and ρ(2nd)i = maxi{ρi,β | ρi,β 6=
ρ
(1st)
i }.

V. REDUCED LIST-DECODING

What we want to do is very close to the algorithm of
Section III: we initially use the hard-decision guess r to
compute a syndrome and run the EEA. This succeeds in
finding a codeword if r is less than d/2 errors away from
one. If this fails, we want to do rational interpolation; however,
instead of using all n points we restrict ourselves to only the
least reliable positions, guided by η. How many positions
are considered versus how many errors are “caught” inside
these positions determine whether the rational interpolation
succeeds.



Fig. 1. Visualisation of L, ε, εL, τ and τL. Error Positions have been
ordered for overview. In (a) ε > τ and in (b) ε < τ , but in either case
decoding succeeds since εL is sufficiently large, as according to Lemma 1.

More formally, introduce again E, ε and Λ(x) based on
r, and assume that ε > d/2. According to Proposition 1, by
running the EEA on S(x) and xd−1 we can obtain polyno-
mials H1(x), H2(x) such that there exist some polynomials
A(x), B(x) with

Λ(x) = A(x)H1(x) +B(x)H2(x) (7)

and degA(x) = ε − degH1(x) and degB(x) = ε −
degH2(x).

Let L be the number of positions to use for rational
interpolation; it is not straightforward how to best choose this,
but we get back to it later. Without loss of generality, assume
that reliabilities obtained from the previous section are sorted
in an ascending order such that η0 ≤ η1 ≤ · · · ≤ ηn−1, such
that the chosen positions are the L first.

There are now two counters to keep in mind: ε, the total
number of errors, and εL, the number of errors present in the
L chosen positions. The success of the rational interpolation
depends on both of these. Likewise, choose two “goal” values:
τ and τL ≤ τ . They are loosely the targeted value of ε,
respectively the number of errors there must be in the L
chosen positions for us to succeed. A visualisation of the
parameters is shown in Figure 1.

By Theorem 1, and following arguments similar to those
in Section III, we then set up a rational interpolation problem
for finding A(x) and B(x) using H1(x) and H2(x):

Proposition 2 Consider Theorem 1 and let N = L and
(xi, yi : zi) =

(
αi, H1(αi) :H2(αi)

)
for i = 0, . . . , L− 1, as

well as T = τL, w1 = τ − degH1(x) and w2 = τ − d +
degH2(x). If

τ2L > L(2τ − d), (8)

there exist valid choices of s and ` such that a Q(y, z)
satisfying the requirements of Theorem 1 exists. Furthermore,
if ε = τ and εL = τL, then Q(A(x), B(x)) = 0.

Proof: The existence of Q follows directly from
Theorem 1 and (4). The property Q(x,A(x), B(x)) = 0
follows from the arguments of Section III since the equation
A(αi)H1(αi) + B(αi)H2(αi) = 0 holds for T = τL out

Algorithm 1 Reduced list-decoding with reliability
Input: A GRS code C over Fq with parameters n, k,

d = n − k + 1 and evaluation points α0, . . . , αn−1.
A hard-decision guess r ∈ Fnq and reliability vector
η = (η0, η1, . . . , ηn−1). A decoding radius τ and the
desired number of points to interpolate L.

Output: A list of codewords in C or Fail.

1: Calculate the syndrome S(x) from r as in (1).
2: Run the EEA on xd−1, S(x) and calculate H1(x), H2(x).
3: If H1(x) is a valid error-locator of degree less than d/2,

use it to correct r, and if this yields a word in C, return
this one word.

4: Otherwise, we seek A(x), B(x) as in (3). Set τL =
b
√
L(2τ − d) + 1c and set w1, w2 as in Proposition 2.

Construct the Q(y, z) described in that proposition, using
satisfactory values of s and `.

5: Find all pairs of polynomials A?(x) and B?(x) such that
Q(A?(x), B?(x)) = 0. Return Fail if no such pairs exist.

6: For each such pair, construct Λ?(x) = A?(x)H1(x) +
B?(x)H2(x). If it is a valid error-locator, use it for
correcting r. Return Fail if none of the factors yield
error-locators.

7: Return those of the corrected words that are in C. Return
Fail if there are no such words.

of N = L values of i, and since degA(x) + degB(x) ≤
2ε− (degH1(x) + degH2(x)) = 2τ − d = w1 + w2.

As before, we also have to consider if we succeed whenever
ε 6= τ . Here the situation is surprisingly different than in
Section III:

Lemma 1 Considering Proposition 2 when ε 6= τ , then
Q(A(x), B(x)) = 0 if:

`

s
≥ τL − εL

τ − ε
, whenever τ > ε,

`

s
≤ εL − τL

ε− τ
, whenever τ < ε.

Proof: We prove the assertion by showing that Q is
a valid interpolation polynomial satisfying the requirements
of Theorem 1 for almost the same rational interpolation
problem but with T̂ = εL and ŵ1 = ε − degH1(x) and
ŵ2 = ε+ d− degH2(x); the “hats” are added to distinguish
these new parameters from those of Proposition 2. For in that
case Q(x,A(x), B(x)) = 0 follows from the theorem due to
Proposition 1.

Since only T,w1 and w2 are changed in the newly
considered rational interpolation, we only need to show
that the new weighted-degree constraints on Q are satisfied,
i.e. that:

deg(1,ŵ1,ŵ2)Q < sεL.

Since Q satisfied the original interpolation problem, then
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deg(1,w1,w2)Q < sτL. We then compute

deg(1,ŵ1,ŵ2)Q ≤ deg(1,w1,w2)Q

− min
i=0,...,`

{i(w1 − ŵ1) + (`− i)(w2 − ŵ2)}

= deg(1,w1,w2)Q− `(τ − ε).

Thus deg(1,ŵ1,ŵ2)Q is satisfactory low whenever

sεL ≥ sτL − `(τ − ε),

which is equivalent to the conditions of the lemma.
The above lemma thus reveals that when ε < τ , we can

succeed, and we can even do so when fewer errors than τL are
“caught” in the L chosen positions. But, perhaps surprisingly,
it also reveals that when ε > τ , we can still succeed as long
as we also catch more errors in the chosen positions.

Algorithm 1 is the complete proposed decoding algorithm.
The following theorem precisely characterises which code-
words are returned:

Theorem 2 Let r,η be the received word and its reliability
vector respectively. Let L, `, s, τ, τL be parameters as defined
in Algorithm 1. If ∃ c ∈ C s.t. wt(c − r) < d/2, then c is
returned. Otherwise, the set T ⊂ C is returned s.t c ∈ T iff:

wt(c− r)L ≥ τL − `
s (τ − wt(c− r)),

where wt(x)L is the number of non-zero entries of x within
the least reliable L positions according to η.

Proof: Follows from Proposition 2 and Lemma 1.

Let us estimate the complexity: up until Step 3, we
have classical minimum distance decoding, which can be
performed in O(n log2+o(1) n). The remaining steps are as
in regular Wu list-decoding, but where we only use L of
the total n points. The complexity of this part is therefore
O(`MsL logO(1)(`L)), with the same hidden constant as in
Wu list-decoding. As we see in the following section, L can
be chosen as only a fraction of n while still ensuring good
decoding performance.

On the Choice of Parameters
For the algorithm one needs to choose L, τ, τL, ` and s.

We have not yet determined which choices lead to optimal
performance. However, our simulations indicate that the
somewhat ad hoc choices we have made so far still gives
good performance, and simultaneously show that a gain could
definitely be made. We here briefly go through some of our
current observations. Further analysis on the best possible
choices and its impact on performance would be interesting.

Principally, in our simulations we have fixed τ and L for
every received word, but we expect that one could benefit from
varying one or both parameters depending on the distribution
of the reliabilities in η.

The best choice of τL is easy, however. We would like
to succeed while having to catch as few errors as possible,
and when ε = τ this is clearly obtained by choosing τL
minimally while satisfying (8). When ε 6= τ , we see from
Lemma 1 that in all cases it is still beneficial to choose τL
low. Therefore, we can safely always choose τL minimally,
i.e. τL = b

√
L(2τ − d) + 1c.
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Given the parameters L and τL, one has many choices
for ` and s in the rational interpolation. One can use the
numerically smallest possible values, as by the analysis of
e.g. Trifonov [5]; this is what we have done in our simulations
since this minimises the computational complexity. Choosing
differently with the aim of changing the ratio `/s might
improve decoding performance at the price of increasing the
complexity: according to Lemma 1, when τ > ε, we would
like `/s to be as large as possible to maximise probability
of success, while when τ < ε, we would like it as small as
possible. Whichever has the biggest impact on the decoding
performance depends on the code, τ and the SNR.

VI. SIMULATION RESULTS AND CONCLUSION

A. Simulation
We have performed simulations with the proposed decoding

method and compared it to two other decoding methods: the
hard-decision Wu list-decoder and the KV algorithm. We
have used an RS(63, 31, 33) code over F26 and an AWGN
channel with reliability information as described in Section
IV. Approximately one million codewords were simulated
for each SNR. We chose τ = 19 since this is the maximum
possible hard-decision list-decoding radius of the Wu decoder
for this code (this is 3 errors beyond half the minimum-
distance). The choice of the parameters L and τL in the
reduced list-decoding algorithm determines the decoding
performance as shown later.

From Lemma 1 it follows that decoding succeeds whenever:

εL + `
s (τ − ε) ≥ τL

We have therefore examined by simulation what the expected
value of the above left-hand-side is; this can be seen in
Figure 2: the solid curve is

√
L(2τ − d) ≈ τL as a function

of L, while the two dotted lines correspond to the average of
εL + `

s (τ − ε) at two different SNRs. When varying L the
choices of ` and s make the ratio `/s jump up and down; this
is due to integer rounding on the small, possible values of `
and s. This is the reason the dotted curves are not smooth.
As explained in the previous section, this possibly has an
effect on the decoding performance.

When the simulated curve is below the target
√
L(2τ − d),

then poor decoding performance can be expected. Therefore,
for this code and SNRs, at least L > 10 has to be
chosen. Intuitively, we expect the best performance when
the simulated curve is as far as possible above the target.

We chose to simulate with three fixed choices of L: 15,
25 and 45. In Figure 3 the probability of failure (both wrong
decoding and decoding failure) are plotted for the chosen
code when varying the SNR from 5 to 6 dB. The curves are
compared with the classical hard-decision minimum-distance
decoding, the hard-decision Wu list-decoding, and the KV
soft-decision algorithm [7].

The KV algorithm is the best performing soft-decision
decoder for RS codes currently known. As reliability it uses
the ρ matrix described in Section IV. It has a parameter, the
multiplicity-sum, for adjusting the performance at the price
of complexity. In our simulations we have used a very high
multiplicity-sum, namely 2n.

Figure 3 demonstrates that choosing a small L = 15 with



τL = 9, the performance of the reduced list-decoder is close to
that of the hard-decision Wu list-decoder. When we increase
L to 25 with τL = 12, the performance takes a huge jump,
and it comes close to the performance of the KV algorithm.
Further increasing L = 45 with τL = 12 again decreases the
performance.

The values of `/s used in the rational interpolation 5/3 for
L = 15, 2 for L = 25 and 3 for L = 45. We have not yet
further investigated the performance impact of this difference.

B. Conclusion
Initially, our goal was to achieve the decoding performance

of a hard-decision decoder with a soft decoder which could
exploit reliability information to achieve lower complexity.
Surprisingly, the resulting decoder seems to be able to exceed
this performance – for some parameters, by far – and get close
to the KV algorithm. Our method seems to excel at medium-
rate codes where the benefits of hard-decision list-decoding
is usually modest.

This is still with a complexity which is a lot lower than
both the KV algorithm and the Wu list-decoder.

An open question for future investigation is to determine
the best reachable performance of this algorithm, and how
the parameters should be chosen to achieve this; in particular,
it seems promising to choose L and τ differently for each
received word, depending on η.

It would also be interesting to examine the algorithm’s
performance in other channel models and base fields. Yet
another possibility is to carry the reliability information of
η into the rational interpolation, to achieve a method which
more dynamically favours certain positions over others.
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