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Abstract. Power decoding, or “decoding using virtual interleaving” is a technique
for decoding Reed–Solomon codes up to the Sudan radius. Since the method’s
inception, it has been a tantalising goal to incorporate multiplicities, the parameter
allowing the Guruswami–Sudan algorithm to decode up to the Johnson radius. In
this paper we show how this can be done, and describe how to efficiently solve the
resulting key equations.

1 Introduction

Power decoding was originally proposed by Schmidt, Sidorenko and Bossert for
low-rate Reed–Solomon codes (RS) [6]. Using shift-register synthesis techniques,
the method allows to decode as many errors as the Sudan algorithm [8]. As
opposed to this list decoder, Power decoding returns at most one codeword but
will in some cases simply fail. For random errors, this seem to occur with only
very small probability, however. So far analytic bounds on the failure probability
have been obtained when the powering degree is 2 or 3 [4, 7, 9].

The Sudan decoder generalises to the Guruswami–Sudan decoder [3] by
introducing the multiplicity parameter. It seems teasingly clear that one should
likewise be able to introduce a “multiplicity parameter” into Power decoding
and thereby increase the decoding radius up to the Johnson bound; but such a
formulation was so far not found.

In this work we show how it can be done. The overall behaviour of the
decoder is similar to Power decoding: 1) the equations are of a generalised
shift-register type, and no root-finding as in Guruswami–Sudan is necessary;
2) the decoding radius becomes almost exactly that of the Guruswami–Sudan
decoder (under the same choices of parameters); and 3) there remains a low but
non-zero probability of failing whenever one decodes beyond half the minimum
distance.

In [6, 7], Power decoding was formulated by powering the classical syndrome
key equation. In [4] it was described how one can instead power the key equation
implicit in Gao’s decoder [1]. The Power decoding with multiplicities that we
give here is in the same vein.

The results are here stated without proofs but with the necessary lemmas
to make those proofs comparatively simple. Furthermore, it should be noted
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that the analysis of the algorithm’s behaviour is work in progress, and we have
mostly conjectured behaviour based on experimental results as of yet.

2 Key Equations

Consider some finite field F. The [n, k, d] Generalised Reed-Solomon (GRS)
code is the set

C =
{(
β1f(α1), . . . , βnf(αn)

)
| f ∈ F[x] ∧ deg f < k

}
where α1, . . . , αn ∈ F are distinct, and the β1, . . . , βn ∈ F are non-zero (not
necessarily distinct). The αi are called evaluation points and the βi column
multipliers. C has minimum distance d = n − k + 1 and the code is therefore
MDS.

Consider now that some c = (c1, . . . , cn) was sent, resulting from evaluating
some f ∈ F[x], and that r = (β1r1, . . . , βnrn) = c + (β1e1, . . . , βnen) was the
received word with (normalised) error e = (e1, . . . , en). Let E = {i | ei 6= 0} and
ε = |E|.

Introduce two essential polynomials, known to the receiver:

G =
n∏
i=1

(x− αi) R : R(αi) = ri, i = 1, . . . , n

G can be pre-computed, while R is computed upon receiving r using Lagrangian
interpolation.

As usual for key equation decoders, the algorithm will revolve around the
notion of error locator Λ and error evaluator Ω:

Λ =
∏
j∈E

(x− αj) Ω = −
∑
i∈E

eiζi
∏

j∈E\{i}

(x− αj)

where ζi =
∏
j 6=i(αi − αj)−1. Note that |E| = deg Λ > deg Ω.

These four polynomials are related by a key equation, which is implicitly
at the heart of Gao’s decoder up to half the minimum distance [1]. A slightly
stronger relation, however, is the following:

Lemma 1. Λ(f −R) = ΩG

From this, it is easy to show the following:

Lemma 2. For any s, t ∈ Z+ and t ≥ s then

Λs(f −R)t ≡ 0 mod Gs
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Combining these two one can then show the main result:

Theorem 1. For any s, ` ∈ Z+ with ` ≥ s, then

min{s−1,t}∑
i=0

(
Λs−iΩi

)((
t
i

)
Rt−iGi

)
≡ Λsf t mod Gs, for t = 1, . . . , `

Each of these ` equations are “key equations” in the following sense:
Λs,Λs−1Ω, . . . ,ΛΩs−1 are all unknowns, whose inner product with a vector of
known polynomials (the

(
t
i

)
Rt−iGi) have a remainder modulo Gs of surprisingly

low degree (the degree of Λsf t).
The equations are clearly highly non-linear, so to solve them efficiently, we

will relax them to linear equations and hope that the solution to the linear
problem turns out to be exactly Λs, . . . ,ΛΩs−1. This is completely analogous to
the approach taken in classical key equation decoding.

3 How to Solve the Key Equations

The linearisation performed to make the solving of the equations of Theorem 1
tractable is the following: we will seek a vector (λ0, . . . λs−1, ψ1, . . . , ψ`) ∈ F[x]s+`

such that the following three requirements are satisfied:

min{s−1,t}∑
i=0

λi ·
((
t
i

)
Rt−iGi

)
≡ ψt mod Gs, for t = 1, . . . , `

deg λ0 ≥ deg λi + i, for i = 1, . . . , s− 1

deg λ0 ≥ degψt + t(k − 1), for t = 1, . . . , `

Clearly Λ = (Λs,Λs−1Ω, . . . ,ΛΩs−1,Λsf, . . . ,Λsf `) satisfies these requirements,
but there are unfortunately infinitely many other vectors satisfying them. We
will therefore seek the one of least degree, i.e. where deg λ0 is minimal; the hope
is then that this vector is Λ. In that case, decoding will succeed simply by
computing f = ψ1/λ0. If the found minimal vector is not Λ, then decoding has
failed.

The type of key equations of Theorem 1 is dealt with in [5] under the name
“2D Padé approximations”. The search for a satisfactory and minimal degree
vector is there solved using lattice basis reduction of a certain F[x] matrix. In
our case, the matrix would have dimension (s+ `)× (s+ `). The total cost of the
lattice basis reduction can be performed with asymptotic complexity O∼(`ωsn),
where O∼ is like big-O but ignoring log-factors in n, s and `; this uses fast matrix
multiplication and either the method in [2] or [10]. Alternatively, one can use
the Demand–Driven algorithm from [5] which will have asymptotic complexity
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O(`s4n2)1, but is simple to implement and does not use fast arithmetic methods;
therefore it might be more efficient on small and medium sized input.

A central question is how many errors the method will usually cope with.
Based on preliminary analysis and experiments, as well as previous results for
Power decoding with s = 1, we pose the following conjecture:

Conjecture 1. Let τGS(s, `) be the decoding radius of the Guruswami–Sudan
algorithm on C with multiplicity s and list size `. Then decoding using Power
decoding, choosing the same s and ` will succeed whenever |E| ≤ τGS(s, `)− 1,
with high probability, assuming that all error vectors of the same weight are
equi-probable.

The probability of failing is in the order of O(q−(τGS(s,`)−|E|)).
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